STATIC ELECTRICITY” IS ELECTRICITY WHICH IS STATIC? (William J. Beaty)

Instead, ‘static electricity’ is a collection of different electrical phenomena; phenomena where…
The amounts of positive and negative electric charge within a material are not perfectly equal.
Where voltage is high and current is low.
Where electrical forces (attraction and repulsion) are seen to reach across space. Widely spaced objects may attract or repel each other. Hair might stand on end!
Where electric fields (as opposed to magnetic fields) become very important. (Electric fields are also called “electrostatic fields” or “e-fields.”
Electrostatics is about “charge,” and about the attract/repel forces which electric charge creates. The motion or “staticness” of the charge is irrelevant. After all, the forces are still there even when the charges start flowing. And charges which are separated or imbalanced can sometimes flow along, yet the “static” effects are undiminished when the current begins. In other words, it’s perfectly possible to create flows of so-called “static” electricity.
It’s very misleading to concentrate on the “staticness” of the charges. It derails our explanations, and hides many important concepts such as charge separation, the density of imbalanced pos/neg charge, and the presence of voltage fields surrounding the imbalanced charges. These things are important even when the “static electricity” begins moving along as a current.

Electrostatics is not about “staticness,” instead it’s about charge and forces.

Imagine if water was explained just as badly as “static electricity.” In that case, most people would believe in two special kinds of water called “static water” and “current water.” We’d wrongly insist that “hydrostatics” was the study of static water. In that case, only the hydraulics expert would realize there’s no such thing as “static water.” Only the experts would realize that the so-called “static” water is really just pressurized water. The experts would also know that “static water” can even flow along, since pressurized water need not remain still or “static.” Hydrostatics still applies to water when it begins to flow. In a similar way, “static electricity” has everything to do with pressurized charge, and nothing to do with “electricity at rest.”

Here’s another problem with the usual “static electricity” concept. First, think about everyday matter. Down inside its atoms, everyday matter contains equal numbers of positive and negative charges (Protons and Electrons) which are very close together. Are these charges the “static electricity?” After all, they’re static and unmoving, right? They sit there inside each atom. And each individual electron and proton carries a charge of “static electricity.” Shouldn’t we say that physical matter is partly MADE out of “static electricity?”

But if we say that matter is made out of “static,” then where are the sparks, where are the rising hair and crackling noises? There aren’t any, and this shows that the “staticness” is not an important factor. Instead, the most important factor is the balance of opposite charges. Inside matter, the positive and negative charges are close together, and so their effects cancel out. Even though matter is full of charges which are “static” and unmoving, there is normally no “static electricity” to be seen. It’s about IMBALANCE between opposite charges, not about staticness. Also, the presence of charged particles is not such an important factor, since matter is full of them, even when no “static electricity” appears. We need separated, imbalanced particle populations before interesting things start to happen. Just having charged particles is not enough.

How can we fix the confusion? Easy. Don’t call it “static,” instead call it “charge imbalance.” It’s the net electric charge which is important. Or put more simply: it is the separation between positive and negative particles which is the basis for “static electricity.” When quantities of protons are separated from electrons across a large distance, then we’ll get sparks and rising hair. Call this “electric charge”, not “static charge,” since the imbalance remains the same even when the charges flow along very non-statically.

Whenever these opposite charges in matter are sorted out and separated into groups of positive and negative, then we say that “static electricity” has been generated. What does this have to do with the charges remaining still or static? Nothing! In fact, if the charge imbalance can be made to flow along, it will still retain all of its unusual characteristics. It will still attract hair and lint, and cause sparks, etc., even while it is flowing. This puts us into the ridiculous situation of talking about “Static Electricity” …which moves! It’s unfortunate that the term “static electricity” has become so widely adopted as the name for the phenomena. If it had been called something else, “imbalanced electricity” for example, it wouldn’t be nearly as misleading. It’s easy to think about an imbalance which moves or stays still. But it’s impossible to visualize an unmoving substance which flows. And it’s even more unfortunate that textbooks have widely adopted the misleading practice of stating that “static electricity is electricity which is static and unmoving.” This is a lie, and is no less a lie when many textbooks say the same thing. Reality is not determined by majority vote. No matter how many people agree otherwise, the Emperor’s Clothes remain missing.

What we call “Static electricity” also has another name: “high voltage.” All of the familiar electrostatic phenomena which we encounter in everyday situations always involve voltages above 1,000V, and ranging up to around 50,000 volts at the most. If it attracts lint or raises hair, it’s definitely over 1,000 Volts. Rub a balloon on your head, and you generate tens of thousands of volts! This is voltage without a current. Here’s a way to think about it: pure electric current involves a current with zero voltage, while pure “electrostatic” phenomena involve electrical voltages with zero current. Scuff your feet on a carpet and you create a voltage difference of many thousands of volts between your body and the carpet. Study “static electricity” and you study voltage itself.

It would be wonderful if the term “Static electricity” could be removed from the English language and replaced by “High Voltage Electricity.” Or possibly by “Separated Charge,” or “Charge Imbalance,” or “The Science Called Electrostatics.” This won’t happen anytime soon, since the mistake is too deeply ingrained in books and teachers, and in the minds of the public. The best solution is to have everyone stay aware of this issue. Try to avoid using the terms “Static Electricity” and “Static Charge.” And very definitely do not TEACH that “Static” and “Current” are opposite kinds of electricity. After all, charge imbalances still are “imbalances” even when they stop being static and they flow during an electric current.

Also, charge-flow and charge-imbalance can happen in the same wire at the same time. Therefore, anyone who believes that “static” and “current” are two types of opposite, mutually-exclusive electricity, those people will forever remain hopelessly confused about the true nature of any electrical phenomena.

About these ads

About Rob W Harrison
There is a part of my mind that stubbornly thinks about science. I have a life, job, wife and family but without my Van Der Graaf Generator life would be incomplete. I am a great believer that this amazing universe came into being through process: movement >pressure > density > mass. Maybe I believe in an non viscous ether. Anyway this is where I can share my thoughts.

One Response to STATIC ELECTRICITY” IS ELECTRICITY WHICH IS STATIC? (William J. Beaty)

  1. thechosenone says:

    Exactly, and anyone with half a braincell should be able to figure that out for themselves if they’ve ever experienced a “static” shock.

    Well, I suppose it depends on how well one has been brainwashed.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: